Mean-field dynamics with stochastic decoherence (MF-SD): a new algorithm for nonadiabatic mixed quantum/classical molecular-dynamics simulations with nuclear-induced decoherence.

نویسندگان

  • Michael J Bedard-Hearn
  • Ross E Larsen
  • Benjamin J Schwartz
چکیده

The key factors that distinguish algorithms for nonadiabatic mixed quantum/classical (MQC) simulations from each other are how they incorporate quantum decoherence-the fact that classical nuclei must eventually cause a quantum superposition state to collapse into a pure state-and how they model the effects of decoherence on the quantum and classical subsystems. Most algorithms use distinct mechanisms for modeling nonadiabatic transitions between pure quantum basis states ("surface hops") and for calculating the loss of quantum-mechanical phase information (e.g., the decay of the off-diagonal elements of the density matrix). In our view, however, both processes should be unified in a single description of decoherence. In this paper, we start from the density matrix of the total system and use the frozen Gaussian approximation for the nuclear wave function to derive a nuclear-induced decoherence rate for the electronic degrees of freedom. We then use this decoherence rate as the basis for a new nonadiabatic MQC molecular-dynamics (MD) algorithm, which we call mean-field dynamics with stochastic decoherence (MF-SD). MF-SD begins by evolving the quantum subsystem according to the time-dependent Schrodinger equation, leading to mean-field dynamics. MF-SD then uses the nuclear-induced decoherence rate to determine stochastically at each time step whether the system remains in a coherent mixed state or decoheres. Once it is determined that the system should decohere, the quantum subsystem undergoes an instantaneous total wave-function collapse onto one of the adiabatic basis states and the classical velocities are adjusted to conserve energy. Thus, MF-SD combines surface hops and decoherence into a single idea: decoherence in MF-SD does not require the artificial introduction of reference states, auxiliary trajectories, or trajectory swarms, which also makes MF-SD much more computationally efficient than other nonadiabatic MQC MD algorithms. The unified definition of decoherence in MF-SD requires only a single ad hoc parameter, which is not adjustable but instead is determined by the spatial extent of the nonadiabatic coupling. We use MF-SD to solve a series of one-dimensional scattering problems and find that MF-SD is as quantitatively accurate as several existing nonadiabatic MQC MD algorithms and significantly more accurate for some problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the role of decoherence in condensed-phase nonadiabatic dynamics: a comparison of different mixed quantum/classical simulation algorithms for the excited hydrated electron.

Mixed quantum/classical (MQC) molecular dynamics simulation has become the method of choice for simulating the dynamics of quantum mechanical objects that interact with condensed-phase systems. There are many MQC algorithms available, however, and in cases where nonadiabatic coupling is important, different algorithms may lead to different results. Thus, it has been difficult to reach definitiv...

متن کامل

Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations

In this paper, we explore in detail the way in which quantum decoherence is treated in different mixed quantum-classical molecular dynamics algorithms. The quantum decoherence time proves to be a key ingredient in the production of accurate nonadiabatic dynamics from computer simulations. Based on a short time expansion to a semiclassical golden rule expression due to Neria and Nitzan @J. Chem....

متن کامل

Augmented Ehrenfest dynamics yields a rate for surface hopping.

We present a new algorithm for mixed quantum-classical dynamics that helps bridge the gap between mean-field (Ehrenfest) and surface-hopping dynamics by defining a natural rate of decoherence. In order to derive this decoherence result, we have expanded the number of independent variables in the usual Ehrenfest routine so that mixed quantum-classical derivatives are now propagated in time along...

متن کامل

Surface hopping from the perspective of quantum–classical Liouville dynamics

Fewest-switches surface hopping is studied in the context of quantum–classical Liouville dynamics. Both approaches are mixed quantum–classical theories that provide a way to describe and simulate the nonadiabatic quantum dynamics of many-body systems. Starting from a surface-hopping solution of the quantum–classical Liouville equation, it is shown how fewest-switches dynamics can be obtained by...

متن کامل

Algorithmic decoherence time for decay-of-mixing non-Born-Oppenheimer dynamics.

The performance of an analytical expression for algorithmic decoherence time is investigated for non-Born-Oppenheimer molecular dynamics. There are two terms in the function that represents the dependence of the decoherence time on the system parameters; one represents decoherence due to the quantum time-energy uncertainty principle and the other represents a back reaction from the decoherent f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 123 23  شماره 

صفحات  -

تاریخ انتشار 2005